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INTRODUCTION

As any statistician collaborating with applied researchers (be 
they doctors, psychologists, or social scientists) knows, once a 
cause-and-effect relationship has been established, the next point 
on the agenda is very often “How does this effect come about? 
What are the underlying mechanisms?” Indeed, such questions 
have been driving science forward for centuries. Mediation analy-
sis in the general meaning of the term refers to a collection of tools 
and ways of thinking designed to help applied researchers identify, 
formalize, and quantify possible mechanisms (i.e., causal path-
ways) linking a cause to an effect. To name just one example, the 
search for the mechanisms linking exposure to contaminations 
with subsequent disease, which was already under way in the 16th 

century, culminating in Louis Pasteur’s identification of bacteria as 
the “mediating factor,” was based on reasoning about mediation.

In contrast, statistical mediation analysis, which will be the ob-
ject of interest in this tutorial, is concerned with quantifying spe-
cific causal pathways described by one or more measurements of 
specific variables that are either assumed or have been shown to 
be affected by the exposure and themselves affect the outcome. 
Statistical mediation analysis is broadly said to have been initiated 
in the seminal 1986 paper by Baron & Kenny [1]. As will be dem-
onstrated in this tutorial, one of the main contributions of statisti-
cal mediation analysis is to translate the loose or intuitive concepts 
of, for example, Pasteur’s “mediating factors” into statements ex-
pressed as statistical models using mathematical formalism. An-
other important contribution, which will also be thoroughly dis-
cussed in this tutorial, is the derivation of the assumptions that 
must be satisfied before causal pathways can meaningfully be esti-
mated from data.

For the remainder of this tutorial, mediation analysis will be 
taken to mean statistical mediation analysis only. The reader is ex-
pected to be familiar with statistical modelling and inference, as 
well as the distinctions between statistical associations and causal 
effects (i.e., why observational studies are harder to interpret than 
randomized studies). A prior knowledge of theoretical causal in-
ference in general, or mediation analysis in particular, is neither 
assumed nor required.

The rest of this tutorial is structured as follows. Section 1 intro-
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this was an observational study, we attempted to control confound-
ing by including information on age, sex, calendar year, net house-
hold income, educational level, cohabitation status, myocardial 
infarction, cardiac arrhythmia, heart failure, pulmonary oedema, 
cardiogenic shock, valvular heart disease, cerebrovascular disease, 
cancer, chronic obstructive pulmonary disease, diabetes with com-
plications, acute and chronic renal failure, sepsis, pneumonia, anae-
mia, respiratory insufficiency, prior revascularization, prior in-
hospital bleeding, and the use of antihypertensive medications, 
aspirin, lipid-lowering drugs, vitamin K antagonists, glucose-low-
ering drugs, loop diuretics, or chronic obstructive pulmonary dis-
ease medication.

As all Danes are given a unique identification number at birth, 
which is recorded in all subsequent dealings with the health care 
system, we were able to identify all patients hospitalized with a 
first ACS. We excluded patient who were discharged on the day of 
admission to ensure that there had indeed been time to conduct 
proper electrocardiographic monitoring and sequential measure-
ments of cardiac troponins. Only patients aged 30-90 years were 
included. In patients younger than 30 years, it was assumed that 
atherosclerosis may not be have been the predominant underlying 
cause of ACS; similarly, patients older than 90 years were exclud-
ed, as they were deemed too frail for invasive procedures. Finally, 
we restricted the study cohort to those patients who had not died 
or emigrated within 30 days of discharge. We were forced to use 
the condition of 30-day survival to ensure that patients actually 
had the time to initiate secondary therapy. This shortcoming is 
discussed further in section 5.

A total of 49,640 patients (mean age, 66.3 years; standard devia-
tion, 12.8 years; 35% females; 83% myocardial infarction) were in-
cluded. Forty-six percent had received an early invasive treatment 
strategy. The number of deaths during follow-up (median: 3.6 years) 
was 10,847 (21.9%). Concomitant use of all 4 drugs (aspirin, a 
P2Y12 receptor inhibitor, statin, and β-blocker) after discharge 
was observed in 56% of patients (68 vs. 45% in the early and con-
servative invasive groups, respectively). Receiving an early inva-
sive treatment strategy was associated with a lower incidence rate 
of all-cause death (3.1 vs. 8.1 deaths per 100 person-years; adjust-
ed hazard ratio [HR], 0.71; 95% confidence interval [CI], 0.67 to 
0.74; p< 0.001) compared to a conservative approach. 

This case will be used throughout this tutorial. It should be stressed 
that the analyses presented in this tutorial are meant as a pedagogi-
cal tool for explaining mediation analyses. Accordingly, a full dis-
cussion of the medical implications as well as some case-specific 
limitations are not included. The interested reader is referred to 
Hansen et al. [5] for an in-depth discussion.

SECTION 2: THE MATHEMATICAL FRAME-
WORK FOR MEDIATION ANALYSIS

The first step of any mediation analysis is to describe pre-exist-
ing beliefs about the causal structure in which the mediation anal-
ysis is to be conducted. Directed acyclic graphs (DAGs) are the 

duces the case that will be used to illustrate theoretical concepts 
throughout. In section 2, the mathematical framework for media-
tion analysis is introduced and the required assumptions are pre-
sented and discussed. Methods for estimation in real-life settings 
are presented in section 3, and the tools applied to the illustrative 
case are described in section 4. Finally, some current methodo-
logical challenges within mediation analysis (in particular, sensi-
tivity analyses and multiple mediators) are discussed in section 5. 
Due to the nature of the illustrative case, special focus will be giv-
en to handling complex mediators. The simplementation will 
largely build on the recently released R package medflex [2].

SECTION 1: AN ILLUSTRATIVE CASE

Acute coronary syndrome (ACS) presents as a cardiac emergen-
cy caused by sudden obstruction of a coronary artery, most fre-
quently due to thrombus formation in an existing atherosclerotic 
lesion in the vessel wall. In the acute phase, treatment aims to pre-
vent sudden cardiac death and complications by halting the pro-
gression of thrombus formation, managing symptoms, and identi-
fying and treating coronary obstructions; the latter goal involves 
early cardiac catheterization. Once stabilized, patients receive sec-
ondary preventive medication and undergo risk factor modifica-
tion to prevent future cardiovascular events, including death.

Using Danish register data, we have previously established [3]
that in a population of patients with a first hospitalization for ACS, 
the use of an early invasive treatment strategy was associated with 
a lower short-term risk of cardiac death and readmission for myo-
cardial infarction than a conservative approach. It has been specu-
lated that some or, in selected subgroups, all of the long-term ben-
efit provided by an invasive treatment strategy is mediated through 
better secondary preventive medical therapy. In this case study, we 
will explore the relationship between an early invasive treatment strat-
egy, secondary preventive medication, and death from all causes.

Following previous research and current guidelines [4], we de-
fine an early invasive strategy as cardiac catheterization performed 
within 72 hours of index hospitalization, thus assuming an inten-
tion to treat with reperfusion therapy, if appropriate based on cor-
onary anatomy. In contrast, we define a conservative approach to 
be when an angiographic assessment was performed more than 
72 hours after the index hospitalization or not at all.

The general recommendations for secondary preventive medi-
cal therapy in the Danish national guidelines for treating ACS in-
clude: lifelong aspirin, a P2Y12 receptor inhibitor (clopidogrel, 
prasugrel, or ticagrelor) for 12 months, lifelong statin therapy, and 
treatment with a β-blocker for at least 2 years. We defined a per-
son as adhering to secondary medication for a given drug if a pre-
scription was filled within 30 days of discharge or if the patient 
was in possession of a sufficient quantity of the drug to cover the 
initial 30 days after discharge (see Hansen et al. [5] for further ref-
erences). As the recommended secondary mediation includes 4 
drugs, we have 4 variables that may function as potential media-
tors. The outcome was death from all causes during follow-up. As 
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method of choice for doing so. An example is given in Figure 1, 
where the assumed causal structure of the illustrative case is pre-
sented. An arrow in a DAG implies that we believe a possible caus-
al connection exists between the 2 variables in question. A causal 
connection, such as A → B, can loosely be interpreted as: “if we 
actively change the variable A, the distribution of B might change.” 
Note that the real assumption in the DAG A → B is that an inter-
vention on B will not change A. For a more detailed introduction 
to DAGs see Pearl [6]. The defining feature of a mediator is that it 
is positioned between the exposure and the outcome when follow-
ing the directions of the arrows in the DAG. The DAG must also 
include all likely common causes of any pair constructed from an 
exposure, mediator, and outcome. In Figure 1, early intervention 
is assumed to affect the secondary treatment strategy (here defined 
as drug initiation within 30 days), which in turn affects mortality; 
this effect is called an indirect effect. There might also be other me-
chanisms, not involving the secondary treatment strategy, through 
which early intervention can affect mortality. These are subsumed 
within the direct arrow from early invasive strategy to death, which 
therefore can be thought of as mediation through all mediators 
except for the secondary treatment strategy; this is called a direct 
effect.

From an intuitive point of view, mediation analysis boils down 
to describing what would happen if a) the indirect pathway was 
the only causal pathway between exposure and outcome and b) 
the indirect pathway could be deactivated completely. However, 
this intuition is not sufficient to mathematically define the corre-
sponding parameters to be estimated. We therefore introduce so-
called counterfactual variables [6]. Building on the variables de-
fined in Figure 1, these are:

•  Yi (a, m) is the outcome achieved for person i if, possibly con-
trary to fact, exposure had been set to a and mediator to m.

•  Mi (a) is the mediator achieved for person i if, possibly con-
trary to fact, exposure had been set to a.

The subscript i will be omitted when referring to a randomly 

picked person. The counterfactual variable Yi (1, m) corresponds 
to the death time observed in a double-intervention randomized 
trial where early intervention had been used and secondary med-
ication set to m. Likewise, the counterfactual variable Mi (1) is the 
secondary medication observed in a single-intervention randomized 
trial where early intervention had been used. One can combine 
the two counterfactuals, yielding so-called nested counterfactuals 
defined as Y (a, M (a*)). When a= a*, the nested counterfactual 
simply corresponds to the observations one would observe if early 
intervention had been set to a. In the mediation analysis litera-
ture, the effect one would observe in a simple randomized trial is 
referred to as the total effect of treatment (i.e., early intervention), 
and it is defined as a comparison of the distribution of Y (1, M (1)) 
with that of Y (0, M (0)). The comparison could be done as a com-
parison of average values, but with a survival outcome, it would 
be more common to compare the 2 arms of the trial using a Cox 
model, leading to a causal HR quantifying the effect of treatment. 
The books by Pearl [6] and Hernán & Robins [7] provide a thor-
ough introduction to why 1 arm of a randomized trial can be used 
to estimate the distribution of the counterfactual variable Y (1, M 
(1)), which is a quantity defined for the whole population, not only 
the people in the A= 1 arm.

Realizing that the traditional 2-arm randomized controlled trial 
can be viewed as a double-intervention trial where, for instance, 
in the a= 0 arm, treatment is set to 0 and the mediator to the val-
ue it would naturally take for that person when treatment is set to 
0, leads to the following definition of the so-called natural direct 
and indirect effects. For ease of presentation alone, we compared 
the counterfactuals using their average values, but other scales 
such as odds ratios (ORs) could equally well have been used.

Total effect of treatment:
= E[Y (1, M (1))]−E[Y (0, M (0))]
=  (E[Y (1, M (1))]−E[Y (1, M (0))])+(E[Y (1, M (0))]− 

E[Y (0, M (0))])
= natural indirect effect + natural direct effect

Written in words, the natural indirect effect is the effect you see 
by changing the mediator, as if you had changed the treatment 
without actually changing the treatment itself. Likewise, the natu-
ral direct effect is the effect you see by changing the treatment, but 
keeping the mediator fixed at whatever level it would be had you 
not changed the treatment. Thus, by introducing the nested coun-
terfactual E[Y (a, M (a*))] for a ≠ a* we can give a precise mathe-
matical definition of mediation. This definition was originally in-
troduced by Pearl [8] and much work has since been published 
on identification, estimation, and applications, culminating in the 
recent book by Vanderweele [9], where a comprehensive list of 
references can be found. As the definition of natural direct and 
indirect effects at its core builds on comparing distributions of 
nested counterfactuals, these effects can just as easily be expressed 
on other scales than the averages. For a survival outcome, it would, 

Figure 1. Generic directed acyclic graph for mediation analysis (A) 
and for the illustrative example (B). C, confounder; A, exposure; M, 
mediator; Y, outcome.
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for instance, be more common to decompose the HR as follows:

HR of a= 1 vs. a= 0
        =  hazard for Y (1, M (1))
             hazard for Y (0, M (0))
        =  hazard for Y (1, M (1))        hazard for Y (1, M (0))
             hazard for Y (1, M (0))        hazard for Y (0, M (0))
        =  natural indirect HR× natural direct HR

From the derivations above, it is apparent that the key to em-
ploying natural direct and indirect effects is to identify and esti-
mate the distribution, or aspects of the distribution, of the nested 
counterfactuals Y (a, M (a*)) for potentially different a and a*. As 
in the DAG in Figure 1, we will allow non- randomized study set-
tings as well. The following assumptions are sufficient to identify 
natural direct and indirect effects on any scale from independent 
observations of the triplet (C, A, Y) [9].

No uncontrolled confounding
Assume that the variables collected in C are sufficient for con-

trolling confounding for a) the exposure-outcome relationship, b) 
the exposure-mediator relationship, and c) the mediator-outcome 
relationship (in [c], A is included in the set of control variables). 
Mathematically, the conditions are:

Y (a, M (a)) ㅛ A | C (1a)
M (a) ㅛ A | C (1b)
Y (a, m) ㅛ M | (A, C) (1c)

Positivity
Assume that for any values of confounders, all exposure values 

have non-zero probability and likewise that for any values of con-
founders and exposure, all mediator values have non-zero proba-
bility. Mathematically, the conditions are:

P (A= a|C= c)> 0 for all a, c (2a)
P (M= m|C= c, A= a)> 0 for all a, c, m (2b)
and equivalent using densities when A or M are continuous.

Consistency
Assume that the nested counterfactuals will actually take the 

observed values when the treatment and mediator are actively set 
to the values they would naturally have had in the absence of an 
intervention. Mathematically, the condition is:

P (Y (A, M)= Y)= 1 and P (M (A)= M)= 1 (3a)

Identification of natural effects
Assume that the counterfactual out come, Y (a, m) is independ-

ent of the counterfactual mediator, M (a*) when ever a and a* are 
different. Mathematically, the condition is:

Y (a, m) ㅛ M (a*) | C for any m and a≠a* (4a) 

While these assumptions are structural and therefore not possi-
ble to verify using observed data alone, the identification assump-
tion (4a) is by far the most difficult to comprehend. This assump-
tion imposes independence between 2 distinct counterfactual worlds 
(because a and a* are assumed to be different). From an applied 
perspective, assumption (4a) can be replaced by assuming that 
there are no confounders of the mediator-outcome relationship 
that are themselves affected by exposure. Or, perhaps more practi-
cally, one can assume that the indirect and direct effects are creat-
ed by distinct and causally unrelated mechanisms.

To see why these conditions suffice, we will next derive an ex-
plicit formula for E[g (Y (a, M (a*))]. The arbitrary measurable 
function g : R → R is included to demonstrate that it is the full dis-
tribution of the nested counterfactual that we have identified, not 
only the mean. For ease of exposition only, we will assume that C 
and M are discrete, with state space C and M, respectively.

where equality i follows from (4a), equality ii from (1a-1c), and 
equality iii from (3a). The final expression only depends on the 
observed data and can therefore be estimated from the observed 
data. It appears as if the positivity assumption is not needed; how-
ever, it is precisely the positivity assumption that guarantees that, 
in large samples, all quantities in the final expression can be non-
parametrically estimated. If one is only interested in a given func-
tion g and contrasts such as E[g (Y (1, M (1)))] − E[g (Y (0, M (1)))], 
then the identification assumption can be reduced to certain no-
interaction assumptions.

When g is reduced to the identity function, the formula is known 
as Pearl’s mediation formula or just the mediation formula. While 
the mediation formula in principle allows non-parametric estima-
tion of any mediation analysis, it can rarely be applied directly, as 
one will suffer the curse of dimensionality when trying to estimate 
E [g(Y) | A=a, M=m, C=c] in all strata. As in all other bran ches of 
statistics, the curse of dimensionality is countered by introducing 
parametric modelling assumptions. This will be the theme of the 
next section.

SECTION 3: ESTIMATING NATURAL EFFECTS 
MODELS

Several suggestions have been made for operationalizing the es-
timation of natural direct and indirect effects, such as the SPSS/
SAS macros developed by Valeri & Vanderweele [10] and the R 

assume that C and M are discrete with state space C and M, respectively.

E[g(Y (a,M(a∗)))]

=
∑
c∈C

E[g(Y (a,M(a∗))) | C = c]P (C = c)

=
∑

c∈C,m∈M

E[g(Y (a,M(a∗))) | M(a∗) = m,C = c]P (M(a∗) = m | C = c)P (C = c)

=
∑

c∈C,m∈M

E[g(Y (a,m)) | M(a∗) = m,C = c]P (M(a∗) = m | C = c)P (C = c)

i
=

∑
c∈C,m∈M

E[g(Y (a,m)) | C = c]P (M(a∗) = m | C = c)P (C = c)

ii
=

∑
c∈C,m∈M

E[g(Y (a,m)) | A = a,M = m,C = c]P (M(a∗) = m | A = a∗, C = c)P (C = c)

iii
=

∑
c∈C,m∈M

E[g(Y ) | A = a,M = m,C = c]P (M = m | A = a∗, C = c)P (C = c)

where equality i follows from (4.a), equality ii from (1.a-1.c), and equality
iii from (3.a). The final expression only depends on observed data and is
therefore estimteable from observed data. It appears as if the positivity as-
sumption is not needed, however, it is exactly the positivity assumptions that
guarantees that, in large samples, all quantities in the final expression can
be non-parametrically estimated. If one is only interested in a given function
g and contrasts like E[g(Y (1,M(1)))] − E[g(Y (0,M(1)))] then the identifi-
cation assumption can be reduced to certain no-interaction assumptions.

When g is reduced to the identity function, the formula is known as Pearl’s
mediation formula or just the mediation formula. While the mediation for-
mula in principle allows non-parametric estimation of any mediation analysis
it can rarely be applied directly as one will suffer the course of dimensionality
when trying to estimate E[g(Y ) | A = a,M = m,C = c] in all strata. As
in all other branches of statistics the curse of dimensionality is countered by
introducing parametric modelling assumptions. This will be the theme for
the next section.

×
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packages mediation and medflex. The topic of this section will be 
the class of natural effect models (NEMs) originally introduced 
by Lange et al. [11] and Vansterlandt et al. [12] and implemented 
in the R package medflex [2].

The idea underlying NEM is to phrase a mediation analysis as a 
multiple regression problem, thereby a) parameterizing the quan-
tities of interest, b) allowing the choice of outcome model to fol-
low the convention for that type of outcome (i.e., a Cox model for 
survival outcomes), and c) harvesting the extensive existing soft-
ware implementing regression type models. In particular, a NEM 
is a regression model for the nested counterfactual. Expressed as a 
generalized linear model (GLM), it becomes:

g(E[Y (a, M (a*))])= α0 + α1a + α2a*

If, for instance, g is the logit function, then α1 would be the 
marginal natural direct effect log-OR. NEMs can also be formu-
lated conditionally on measured covariates and do not have to be 
only simple additive and linear effect models:

g(E[Y (a, M (a*)) | C= c])= ᾱW (a, a*, c)

where W is a deterministic function. The class of NEM models, 
along with the corresponding estimation techniques [11,12], also 
applies to survival models, such as the Cox model. Estimation al-
gorithms for NEMs are all derived under the assumptions listed 
in the preceding section, and build on the trick that first we dupli-
cate the original data set, then we create an artificial exposure, A*, 
which takes on different values in the 2 replications of each obser-
vation. Finally, we use an auxiliary model to link the artificial ob-
servations (i.e., those where A ≠ A*) to the mediators, which is ei-
ther done through weighting or through imputation. Once this is 
done, the NEM can be estimated by simply applying standard 
software applied to the extended data set and using both A and 
A*, possibly along with C, as the model specification. This entire 
procedure has been automated and implemented in the R pack-
age medflex for any GLM type outcome model. In the following, 
we describe in detail how to estimate a NEM for a survival out-
come with a multidimensional mediator. This is the situation we 
have in the illustrative case.

-  Using the original data alone, fit a parametric survival model 
to the outcome conditioned on confounders, exposure, and 
mediator. This could, for instance, be a Weibull based para-
metric time-to-event model.

-  Construct a new data set by repeating each observation in the 
original data set twice and including an additional variable 
A*, which is equal to the original exposure for the first repli-
cation and equal to the opposite of the actual exposure for the 
second replication. In addition, add an identification variable 
to indicate which data rows originate from the same subject.

-  Use the predict functionality, possibly along with the Weibull 
distribution function, to impute possible survival times for the 
rows where A ≠ A*. In the imputations, the value of the expo-

sure is set to A*, while mediators and confounders are set to 
their observed values; that is, impute values for the survival 
times Yi(a*, M (a)).

-  Fit a Cox model to the extended data set including A, A*, and 
C, but not the mediator. The coefficient of A will be the natu-
ral indirect log-HR and the coefficient of A* will be the natu-
ral direct log-HR.

-  Repeat steps 3 and 4 ten times and combine the obtained log- 
HRs as with ordinary multiple imputation; that is, take the av-
erage of the log-HR estimates.

-  CIs for the natural effect estimates, as well as derived quanti-
ties such as mediated proportions, can be obtained by boot-
strapping, which involves repeating steps 1-5 a total of 1,000 
times, each time creating a new data set by random sampling 
with replacement from the original data set.

SECTION 4: ANALYSING THE ILLUSTRATIVE 
CASE

In our illustrative case, the outcome of interest is death from 
any cause during follow-up. Censoring was almost exclusively ad-
ministrative, as emigration is rare in this population. The underly-
ing time scale is in years, starting at 30 days after hospital discharge. 
The mediator is the 4-dimensional variable indicating whether 
each of the 4 recommended secondary treatments was followed.

As exposure to aspirin, P2Y12 inhibitors, statins, and β-blockers 
could not reasonably be said to constitute distinct causal pathways, 
but were highly interdependent, mediation was only assessed thr-
ough the combined 4-dimensional mediator. Accordingly, the coun-
terfactual mediator was M (a) є {0, 1}4, where a= 0 indicates con-
servative invasive treatment and a= 1 indicates early invasive treat-
ment. The nested counterfactual was death time in years, starting 
30 days after hospital discharge. To accommodate censoring, the 
nested counterfactual outcome technically had 2 dimensions, name-
ly, an event time and an event indicator Y (a, M (a*))= ((T, δ) (a, 
M (a*)). For ease of exposition, we will only refer to the underly-
ing event time and event indicator when required by context. Our 
effect measure of interest was natural direct and indirect HRs de-
composing the total effect, which had a HR of 0.71 (95% CI, 0.67 
to 0.74). Accordingly, the final natural effects model (i.e., the one 
fitted in step 4 of our suggested approach) should be a Cox pro-
portional hazard model.

Table 1 presents simple descriptive statistics of the data. Because 
of the very large sample size, all associations between the treatment 
strategy and confounders, as well as mediators, were highly signi-
ficant.

Table 1. Descriptive statistics

Conservative Early invasive p-value

n 26,858 22,782
Mean age (yr) 69.0 63.0 <0.001
Male (%) 59.4 70.7 <0.001
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Figure 2 presents Kaplan-Meier curves for the 2 treatment strat-
egy groups. It also presents the curves obtained by fitting a para-
metric survival model with a Weibull error distribution using only 
the treatment groups as covariates. It clearly shows the large dif-
ferences in raw survival between the groups, and, more impor-
tantly, the figure also demonstrates that the simple 3-para meter 
model does a good job of capturing the distributions (Figure 2).

Step 1: For the actual mediation analysis, we fit a parametric 
survival model with a Weibull error distribution to the survival 
times using the treatment group, mediators, and a long list of po-
tential confounders as explanatory variables (Appendix 1). The 
Appendix 2 presents both the employed R code and the full table 
of estimated parameters. Note that for technical reasons relating to 
R, it is better to use a copy of the exposure variable when fitting 
this model. 

Step 2: The data set can be duplicated and the auxiliary variable 
inserted by copying the original data set twice. In both copies a 
new variable is created (called, say, exposure Star). In the first copy, 
the new variable is set to the values of the actual received treatment 
(exposure Star= exposure) while in the second copy, the new vari-
able is set to the opposite value of the actual received treatment. 
Finally, the two copies are appended producing a single data set 
with twice as many rows as in the original data set. See the R code 
in Appendix 2 for coding advice.

Step 3: We now set the temporary exposure variable, used when 
fitting the imputation model in step 1, to the values in the just cre-
ated exposure variable (i.e., exposure Star). As the employed sur-
vival model is parametric, we can randomly draw survival times 

conditional on observed mediators and the just-defined temporary 
exposure variable. This corresponds to randomly drawing the nest-
ed counterfactuals variables Ya*,a, where a* and a are potentially 
different. To avoid extrapolating the imputation model outside 
what is supported by the data, any imputed survival time longer 
than the decided maximum follow-up (7 years in this case) will be 
artificially censored at the time of maximal follow-up. For the R 
implementation, see lines 21 to 32 of the Appendix 2.

Step 4-5: For each draw of the imputed nested counterfactuals, 
we fit a Cox model including the exposure that was actually re-
ceived (the coefficient of this variable will estimate the natural in-
direct log-HR), the created exposure variable (the coefficient of 
this variable will estimate the natural direct log-HR), and all con-
founders. Note that the mediators are not included in this model. 
This is repeated 10 times, and the 10 resulting model fits are com-
bined using standard formulas for multiple imputation. The re-
sulting estimates are reported in Appendix 1. The fitted model is a 
natural effects Cox model.

Step 6: Finally, CIs are established by 5,000 bootstrap repetitions 
of steps 1-5. From the bootstrapped replications, we also directly 
obtain CIs for derived quantities, as the total effect (the sum of nat-
ural direct and indirect log-HRs) and the mediated proportion 
(natural indirect log-HR divided by total effect log-HR). The re-
sults are reported in Table 2.

From the Table 2, it is observed that after controlling for con-
founders, the use of early invasive treatment was associated with a 
reduction in 1-year mortality of 30% (OR, 0.70). The effect of ear-
ly invasive treatment has 2 components: an indirect effect through 
secondary preventive medication, reducing risk by 10% (OR, 0.90), 
and the effect through all other pathways, reduces risk by a further 
23%. An equivalent statement is that between a quarter and a 
third of the beneficial effect of early invasive treatment was achieved 
through the use of the 4 discharge medications. Arguably, this part 
of the survival gain could be achieved without adopting a full ear-
ly invasive strategy, but instead by increasing the use of the 4 dis-
charge medications to the levels seen in patients who underwent 
an early invasive treatment.

Table 2. Summary of mediation analysis

 HR
95% CI

Lower limit Upper limit

Effect1 

   Natural indirect 0.90 0.88 0.92
   Natural direct 0.77 0.76 0.79
   Total 0.70 0.69 0.70
Mediated proportion 0.30 0.25 0.34

HR, hazard ratio; CI, confidence interval. 
1The effects are HRs for all-cause mortality except for the mediated pro-
portion. These results are based on a natural effects Cox model condi-
tional on all recorded baseline confounders.
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Figure 2. Kaplan-Meier curves (full line) along with survival curves 
(finely dashed lines) from a fitted parametric model with a Weibull 
error distribution. The lower curves are for the conservative strategy 
group, while the upper is for the early invasive strategy.
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R package medflex to avoid own coding
As demonstrated above and in the Appendix 2, the natural ef-

fect Cox models requires some independent coding from the re-
searcher. This is in contrast to most other types of outcomes (con-
tinuous, binary, counts, etc.) where estimating the natural effect 
models has been completely automated in the R package medflex 
[2]. At present, the medflex package does not support survival 
models; however, such functionality is expected to be introduced 
in upcoming versions of the package. To illustrate the use of the 
package, we will reanalyse the illustrative case using 1-year sur-
vival, which is essentially fully observed in the data and can there-
fore be analysed using a natural effects logistic model, which is 
fully supported by the medflex package. Across the sample, we 
have 3,610 deaths within 1 year, corresponding to 7.3%. The med-
flex package will carry out the same steps as described above, but 
in an automated manner. Accordingly, the first step is to specify 
an imputation model and feed this model to the function neMod-
el. Here, we also specify the number of mediators. The code is in-
cluded below, where BinaryMort is the outcome and dhrkag3 the 
exposure. The mediators are asatreat30, adptreat30, statintreat30, 
and betatreat30 and the number of mediators is specified using 
the nMed argument. All other variables are confounders; see Ap-
pendix 1 for definitions of the variables.

fitAux ← glm (BinaryMort ~ dhrkag3 + asatreat30 + adptreat30
+ statintreat30 + betatreat30 + i_alder + factor (sex)
+ factor (indkgrp) + factor (uddankat) + boralene + factor (fi_aar)
+ mi + card + cochf + puled + shock + cervas + mal + diabet
+ arf + crf + anemi + pneumoni + sepsis + klap + bleed
+ Antihyp_12mb + Lipidlow_12mb + ASA_12mb + VitKant_12mb
+  Diureti_loop_12mb + COPD_12mb + tidl_reva, data=workData, 

family= “binomial”)

extendedData ← neImpute(fitAux, nMed= 4)

The last step is then to specify the natural effects model within 
the neModel function and extract the estimates for natural direct 
and indirect effects. The code is presented below.

fit NEM_binaryOutcome ← neModel (BinaryMort ~ dhrkag30 
+ dhrkag31

+ i_alder + factor (sex) + factor (indkgrp) + factor (uddankat)
+ boralene + factor (fi_aar) + mi + card + cochf + puled + shock
+ cervas + mal + diabet + arf + crf + anemi + pneumoni + sepsis
+ klap + bleed + Antihyp_12mb + Lipidlow_12mb + ASA_12mb
+  VitKant_12mb + Diureti_loop_12mb + COPD_12mb + tidl_

reva, expData=extendedData, family=“binomial”, se=“robust”

Summary (neEffdecomp (fitNEM_binaryOutcome))

The neImpute function creates the 2 new auxiliary exposure 
variables dhrkag30 and dhrkag31, which correspond to the natu-
ral direct and indirect effects, respectively. As the natural effects 

model is in this case a logistic regression, the estimates are pre-
sented as ORs in the Table 3.

From the Table 3, it is observed that the mediated proportion is 
similar to what was found in the Cox-based analysis, but with wid-
er CIs. As we are using fewer events in the analysis, the wider CIs 
are to be expected. The effect estimates are similar to the Cox-based 
analysis, but numerically smaller; however, as one is a HR and the 
other is an OR, they cannot be directly compared.

SECTION 5: NEW CHALLENGES WITHIN  
MEDIATION ANALYSIS

As outlined in the preceding sections, mediation analysis with 
a single well-defined mediator (possibly multi-dimensional) and 
associated simple causal structure has by now been very well re-
searched. This includes theoretical considerations and software 
implementations. For the applied researcher, a review of existing 
software solutions written by Starkopf et al. [13] is under review 
and available as a working paper upon request. On the purely ap-
plied side, we still need to see more applications, mainly to ad-
dress subject matter problems, but also to establish common best 
practices for conducting mediation analyses.

This by no means implies that there are no unsolved methodo-
logical questions within mediation analysis. We see some of the 
most pressing problems as:

First, how to handle measurement error for the mediator. Cur-
rently, the best suggestion is to conduct sensitivity analyses assess-
ing the potential impact of such measurement errors. This is of 
course good, but it would be more fruitful to have methods that 
could handle measurement errors directly. Mplus has capabilities 
in this direction [14], but they come at the cost of numerous para-
metric assumptions, and worse, a reduced causal interpretation, 
because effects are expressed on a latent and somewhat arbitrarily 
defined scale. Second, further methods to handle causally ordered 
mediators and/or mediators measured repeatedly over time. Im-
portant work in this regard was recently published [15]. Moreo-
ver, in the context of a survival outcome, the problem is further 
complicated by the fact that death has a truncation effect on the 
mediator process [16].

Third, existing software for mediation analysis should be extend-
ed to make it easier to conduct sensitivity analyses.

Table 3. Natural direct and indirect ORs when only looking at 1-year 
survival

OR
95% CI

Lower limit Upper limit

Effect 
   Natural indirect 0.84 0.78 0.89
   Natural direct 0.66 0.62 0.70
   Total 0.55 0.51 0.60
Mediated proportion 0.30 0.22 0.38

OR, odds ratio; CI, confidence interval.
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CONCLUSION

It is our hope that this tutorial has shown the potential of medi-
ation analyses in discovering the causal mechanisms underlying a 
given cause-and-effect relation, and has demonstrated the relative 
ease with which mediation analyses can be conducted using stand-
ard software.

CONFLICT OF INTEREST

The authors have no conflicts of interest to declare for this study.

ORCID

Theis Lange: http://orcid.org/0000-0001-6807-8347; Kim Wadt 
Hansen: http://orcid.org/0000-0003-0851-5095

REFERENCES

1. Baron RM, Kenny DA. The moderator-mediator variable distinc-
tion in social psychological research: conceptual, strategic, and 
statistical considerations. J Pers Soc Psychol 1986;51:1173-1182.

2. Steen J, Loeys T, Moerkerke B, Vansteelandt S. Medflex: an R pack-
age for flexible mediation analysis using natural effect models. J 
Stat Softw 2017. doi: https://doi.org/10.18637/jss.v076.i11.

3. Hansen KW, Sorensen R, Madsen M, Madsen JK, Jensen JS, von 
Kappelgaard LM, et al. Effectiveness of an early versus a conserv-
ative invasive treatment strategy in acute coronary syndromes: a 
nationwide cohort study. Ann Intern Med 2015;163:737-746.

4. Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti 
F, et al. 2015 ESC guidelines for the management of acute coro-
nary syndromes in patients presenting without persistent ST-seg-
ment elevation: Task Force for the Management of Acute Coro-
nary Syndromes in Patients Presenting without Persistent ST-Seg-
ment Elevation of the European Society of Cardiology (ESC). Eur 
Heart J 2016;37:267-315.

5. Hansen KW, Sorensen R, Madsen M, Madsen JK, Jensen JS, von 
Kappelgaard LM, et al. Effectiveness of an early versus a conserv-

ative invasive treatment strategy in acute coronary syndromes: a 
nationwide cohort study. Ann Intern Med 2015;163:737-746.

6. Pearl J. Causality: models, reasoning, and inference. 2nd ed. Cam-
bride: Cambridge University Press; 2009.

7. Hernán MA, Robins JM. Causal inference. London: Chapman & 
Hall; 2012. 

8. Pearl J. Direct and indirect effects. In: Jack Breese J, Koller D; Ameri-
can Association for Artificial Intelligence. Uncertainty in artificial 
intelligence. Proceedings of the Seventeenth Conference; 2001 
Aug 2-5; Seattle, USA. San Francisco: Morgan Kaufmann Pub., 
2001, p. 411-420.

9. Vanderweele TJ, Explanation in-causal inference: methods for 
mediation and interaction. New York: Oxford University Press; 
2015. 

10. Valeri L, Vanderweele TJ. Mediation analysis allowing for expo-
sure-mediator interactions and causal interpretation: theoretical 
assumptions and implementation with SAS and SPSS macros. 
Psychol Methods 2013;18:137-150.

11. Lange T, Vansteelandt S, Bekaert M. A simple unified approach 
for estimating natural direct and indirect effects. Am J Epidemiol 
2012;176:190-195.

12. Vansteelandt S, Bekaert M, Lange T. Imputation strategies for the 
estimation of natural direct and indirect effects. Epidemiol Meth-
ods 2012;1:131-158.

13. Starkopf L, Andersen MP, Gerds TA,  Torp-Pedersen C, Lange T. 
Comparison of five software solutions to mediation analysis; 2017 
[cited 2017 Sep 14]. Available from: https://ifsv.sund.ku.dk/bio-
stat/annualreport/images/0/0a/Research_Report_17-01.pdf.

14. Muthén B, Muthén LK, Asparouhov T. Regression and mediation 
analysis using Mplus. Los Angeles: Muthén & Muthén; 2016.

15. Steen J, Loeys T, Moerkerke B, Vansteelandt S. Flexible mediation 
analysis with multiple mediators. Am J Epidemiol 2017;186:184-
193.

16. Strohmaier S, Haase N, Wetterslev J, Lange T. A simple to imple-
ment algorithm for natural direct and indirect effects in survival 
studies with a repeatedly measured mediator; 2017 [cited 2017 
Aug 31]. Available from: http://www.stat-center.pku.edu.cn/Stat/
Index/research_show/id/227.



Lange T et al. : Applied mediation analyses: a review and tutorial

www.e-epih.org    |  9

Appendix 1. Full model fits

When estimating the natural effect Cox model in the illustrative case, a Weibull parametric survival model was used as an intermedi-
ate step in order be able to impute the nested counterfactual. The model contains exposure, mediators, and all considered confounders.

After imputation, a natural effects Cox model can be estimated by fitting a Cox model to the extended data set. The table below pre-
sents estimates for a single imputation.

Table S1a. Model t for Weibul based parametric survival model

Variable (in R notation) Estimate SE p-value

(Intercept) 13.302 0.101 0.000
dhrkag3TEMP 0.250 0.024 0.000
asa_treat30 0.080 0.015 0.000
adp_treat30 0.095 0.011 0.000
statin_treat30 0.204 0.013 0.000
beta_treat30 0.098 0.012 0.000
i_alder -0.064 0.001 0.000
factor(sex)2 0.232 0.021 0.000
factor(indkgrp)2 0.159 0.028 0.000
factor(indkgrp)3 0.316 0.038 0.000
factor(uddankat)2 0.030 0.022 0.165
factor(uddankat)3 0.146 0.034 0.000
boralene -0.155 0.021 0.000
factor(fi_aar)2006 0.003 0.029 0.918
factor(fi_aar)2007 -0.027 0.032 0.399
factor(fi_aar)2008 -0.146 0.038 0.000
factor(fi_aar)2009 -0.209 0.042 0.000
factor(fi_aar)2010 -0.173 0.048 0.000
factor(fi_aar)2011 -0.280 0.055 0.000
mi -0.598 0.032 0.000
card -0.026 0.027 0.339
cochf -0.283 0.026 0.000
puled -0.234 0.077 0.003
shock -0.107 0.170 0.530
cervas -0.341 0.034 0.000
mal -0.985 0.039 0.000
diabet -0.388 0.036 0.000
arf -0.405 0.066 0.000
crf -0.395 0.051 0.000
anemi -0.285 0.040 0.000
pneumoni -0.380 0.028 0.000
sepsis -0.155 0.074 0.036
klap -0.260 0.037 0.000
bleed -0.102 0.048 0.034
Antihyp_12mb -0.021 0.022 0.352
Lipidlow_12mb 0.093 0.024 0.000
ASA_12mb -0.101 0.022 0.000
VitKant_12mb -0.048 0.037 0.188
Diureti_loop_12mb -0.442 0.023 0.000
COPD_12mb -0.362 0.023 0.000
tidl_reva 0.278 0.064 0.000
Log(scale) -0.022 0.009 0.012
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Table S1b. Full model t for natural eect model based on a single imputation

Description R variable names log-HR SE p-value

Indirect dhrkag3 -0.10 0.01 0.00
Direct dhrkag3STAR -0.26 0.01 0.00
Age i_alder 0.07 0.00 0.00
Gender (female) sex2 -0.21 0.01 0.00
Income (middle) factor(indkgrp)2 -0.16 0.02 0.00
Income (high) factor(indkgrp)3 -0.32 0.03 0.00
Education (middle) factor(uddankat)2 -0.05 0.01 0.00
Education (high) factor(uddankat)3 -0.12 0.02 0.00
Live alone boralene 0.17 0.01 0.00
Year (2006) factor(fi_aar)2006 -0.03 0.02 0.19
Year (2007) factor(fi_aar)2007 0.00 0.02 0.92
Year (2008) factor(fi_aar)2008 0.14 0.03 0.00
Year (2009) factor(fi_aar)2009 0.20 0.03 0.00
Year (2010) factor(fi_aar)2010 0.16 0.03 0.00
Year (2011) factor(fi_aar)2011 0.25 0.03 0.00
Myocardial infarction mi 0.49 0.02 0.00
Cardiac arrhythmia card 0.05 0.02 0.01
chronic obstructive pulmonary disease cochf 0.30 0.02 0.00
Pulmonary oedema puled 0.30 0.06 0.00
Cardiogenic shock shock 0.22 0.11 0.05
Cerebrovascular disease cervas 0.37 0.02 0.00
Diabetes with complications diabet 0.36 0.03 0.00
acute renal failure arf 0.44 0.05 0.00
Chronic renal failure crf 0.44 0.04 0.00
Anaemia anemi 0.34 0.03 0.00
Pneumonia pneumoni 0.46 0.02 0.00
Sepsis sepsis 0.20 0.05 0.00
Valvular heart disease klap 0.26 0.03 0.00
Prior in-hospital bleeding bleed 0.17 0.03 0.00
Use of antihyp. medication last 12M Antihyp_12mb 0.06 0.01 0.00
Use of lipid-lowering drugs last 12M Lipidlow_12mb -0.04 0.02 0.02
Asprin ASA_12mb 0.16 0.01 0.00
Use of vitamin K antagonists last 12M VitKant_12mb 0.09 0.02 0.00
Use of glucose-lowering drugs lst 12M?? Diureti_loop_12mb 0.50 0.02 0.00
Use of loop diuretics or COPD last 12M COPD_12mb 0.39 0.02 0.00
Prior revascularization tidl_reva -0.24 0.04 0.00
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Appendix 2. Employed R code

B Employed R code

The full R code used for estimating the natural effect Cox model is presented
below.

1 # load data and l i b r a r i e s
2 l i b r a r y ( medflex )
3 l i b r a r y (mice )
4 l i b r a r y ( s u r v i v a l )
5 workData <− read . csv ( ” f u l l data . csv ” )
6 maxFollowUpTimeTemp <− 7∗ 365 .25
7

8 ### code to do f u l l mediat ion ana l y s i s
9 ### Def ine main func t i on

10 fitNEM <− f unc t i on (workData , maxFollowUpTimeTemp)
11 {
12 # f i t mediat ion model
13 workData$dhrkag3TEMP <− workData$dhrkag3
14 f i t Imp <− survreg ( Surv ( obs dod , dod ) ˜ dhrkag3TEMP + asa

t r ea t30 + adp t r ea t30 + s t a t i n t r ea t30 + beta t r ea t30
15 + i a ld e r + f a c t o r ( sex ) + f a c t o r ( indkgrp ) +

f a c t o r ( uddankat ) + bora l ene + f a c t o r ( f i
aar ) + mi + card

16 + coch f + puled + shock + cervas + mal +
diabet + a r f + c r f + anemi + pneumoni +
s e p s i s

17 + klap + bleed + Antihyp 12mb + Lipid low 12
mb + ASA 12mb + VitKant 12mb + Diu r e t i
loop 12mb

18 + COPD 12mb + t i d l reva ,
19 data=workData )
20

21 # do datase t expansion and imputation
22 tempData1 <− workData
23 tempData1$dhrkag3STAR <− tempData1$dhrkag3
24 tempData2 <− workData
25 tempData2$dhrkag3STAR <− 1−tempData2$dhrkag3
26 tempData2$dhrkag3TEMP <− tempData2$dhrkag3STAR
27 linPredTemp <− p r ed i c t ( f i t Imp , newdata = tempData2 , type=”

l i n e a r ” )
28 simDodTimesTemp <− rwe i bu l l ( nrow ( tempData2 ) , shape = 1/ f i t Imp $

sca l e , exp ( linPredTemp ) )
29 tempData2$dod <− 1∗ ( simDodTimesTemp<maxFollowUpTimeTemp)
30 tempData2$obs dod <− simDodTimesTemp∗ ( simDodTimesTemp<

maxFollowUpTimeTemp) + maxFollowUpTimeTemp∗ ( simDodTimesTemp
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>=maxFollowUpTimeTemp)
31

32 expData <− rbind ( tempData1 , tempData2 )
33

34 # f i t natura l e f f e c t s model
35 fitNEM <− coxph ( Surv ( obs dod , dod ) ˜ dhrkag3 + dhrkag3STAR
36 + i a ld e r + sex + f a c t o r ( indkgrp ) + f a c t o r (

uddankat ) + bora l ene + f a c t o r ( f i aar ) + mi
+ card

37 + coch f + puled + shock + cervas + mal +
diabet + a r f + c r f + anemi + pneumoni +
s e p s i s

38 + klap + bleed + Antihyp 12mb + Lipid low 12mb
+ ASA 12mb + VitKant 12mb + Diu r e t i loop 12
mb

39 + COPD 12mb + t i d l reva ,
40 data=expData )
41 # summary( fitNEM)
42 # return ( fitNEM)
43 r e turn ( summary( fitNEM)$ c o e f f i c i e n t s )
44 }
45

46 #### Get par e s t imate s
47 tempFitNEM <− fitNEM(workData , maxFollowUpTimeTemp=

maxFollowUpTimeTemp)
48 tempFitNEM
49

50 Nimp <− 10
51 outTable <− array (NA, dim=c (dim(tempFitNEM) ,Nimp) )
52 f o r ( j in 1 :Nimp)
53 {
54 outTable [ , , j ] <− fitNEM(workData , maxFollowUpTimeTemp=

maxFollowUpTimeTemp)
55 }
56

57 l i b r a r y ( Amelia )
58 temp <− mi . meld (q = outTable [ , 1 , ] , s e = outTable [ , 2 , ] , byrow

= F)
59 tempOut <− tempFitNEM [ , 1 : 2 ]
60 tempOut [ , 1 ] <− temp$q . mi
61 tempOut [ , 2 ] <− temp$ se . mi
62 tempOut
63

64 ### get boots t rap SDs
65 G <− 10ˆ3
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66 outputObj <− array (NA, dim = c (dim(tempFitNEM) ,G) )
67 f o r ( j in 1 :G)
68 {
69 tempData <− workData [ sample ( 1 : nrow (workData ) ) , ]
70 temp <− t ry ( fitNEM( tempData , maxFollowUpTimeTemp) , s i l e n t=TRUE

)
71 i f ( c l a s s ( temp) !=” try−e r r o r ” ) outputObj [ , , j ] <− temp
72 rm( tempData , temp)
73 cat ( paste ( ”\n I t t e r a t i o n ” , j , ” o f ” , G, ” comp . ” ) )
74 save ( outputObj , f i l e=”outputObj . Rdata” )
75 }
76

77 outTable <− tempFitNEM [ , 1 : 2 ]
78 outTable [ , 1 ] <− apply ( outputObj [ , 1 , ] , 1 , mean , na . rm=T)
79 outTable [ , 2 ] <− apply ( outputObj [ , 1 , ] , 1 , sd , na . rm=T)
80 wr i t e . csv ( outTable , f i l e=” fitNEMbootstrap . csv ” )
81

82 IE <− outputObj [ 1 , 1 , ]
83 DE <− outputObj [ 2 , 1 , ]
84 TE <− IE+ DE
85 Q <− IE/TE
86

87 outTable <− matrix (NA, nrow=4, nco l=3)
88 outTable [ 1 , ] <− c (mean( IE ) , quan t i l e ( IE , c ( . 0 25 , . 9 75 ) ) )
89 outTable [ 2 , ] <− c (mean(DE) , quan t i l e (DE, c ( . 0 25 , . 9 75 ) ) )
90 outTable [ 3 , ] <− c (mean(TE) , quan t i l e (TE, c ( . 0 2 5 , . 9 75 ) ) )
91 outTable [ 4 , ] <− c (mean(Q) , quan t i l e (Q, c ( . 0 2 5 , . 9 75 ) ) )
92 rownames ( outTable ) <− c ( ”IE” , ”DE” , ”TE” , ”Q” )
93 outTable


